數學學習的思想方法

時間:2023-02-24 13:36:43 梓薇 學習方法 我要投稿

數學學習的思想方法

  在日常學習、工作抑或是生活中,大家總是需要不斷學習的,同時,學習方法也引起了大家的重視。有好的學習方法才能更好的學習。想要高效學習,卻不知道怎么做?以下是小編收集整理的數學學習的思想方法,歡迎大家借鑒與參考,希望對大家有所幫助。

數學學習的思想方法

  數學學習的思想方法 篇1

  一、數形結合的思想方法

  數與形是數學教學研究對象的兩個側面,把數量關系和空間形式結合起來去分析問題、解決問題,就是數形結合思想。數形結合可以借助簡單的圖形、符號和文字所作的示意圖,促進學生形象思維和抽象思維的協調發展,溝通數學知識之間的聯系,從復雜的數量關系中凸顯最本質的特征。它是小學數學教材編排的重要原則,也是小學數學教材的一個重要特點,更是解決問題時常用的方法。

  例如,我們常用畫線段圖的方法來解答應用題,這是用圖形來代替數量關系的一種方法。我們又可以通過代數方法來研究幾何圖形的周長、面積、體積等,這些都體現了數形結合的思想。

  二、集合的思想方法

  把一組對象放在一起,作為討論的范圍,這是人類早期就有的思想方法,繼而把一定程度抽象了的思維對象,如數學上的點、數、式放在一起作為研究對象,這種思想就是集合思想。集合思想作為一種思想,在小學數學中就有所體現。在小學數學中,集合概念是通過畫集合圖的辦法來滲透的。

  如用圓圈圖(韋恩圖)向學生直觀的滲透集合概念。讓他們感知圈內的物體具有某種共同的屬性,可以看作一個整體,這個整體就是一個集合。利用圖形間的關系則可向學生滲透集合之間的關系,如長方形集合包含正方形集合,平行四邊形集合包含長方形集合,四邊形集合又包含平行四邊行集合等。

  三、對應的思想方法

  對應是人的思維對兩個集合間問題聯系的把握,是現代數學的一個最基本的概念。小學數學教學中主要利用虛線、實線、箭頭、計數器等圖形將元素與元素、實物與實物、數與算式、量與量聯系起來,滲透對應思想。

  如人教版一年級上冊教材中,分別將小兔和磚頭、小豬和木頭、小白兔和蘿卜、蘋果和梨一一對應后,進行多少的比較學習,向學生滲透了事物間的對應關系,為學生解決問題提供了思想方法。

  四、函數的思想方法

  恩格斯說:數學中的轉折點是笛卡兒的變數。有了變數,運動進入了數學,有了變數,辯證法進入了數學,有了變數,微分和積分也就立刻成為必要的了。我們知道,運動、變化是客觀事物的本質屬性。函數思想的可貴之處正在于它是運動、變化的觀點去反映客觀事物數量間的相互聯系和內在規律的。學生對函數概念的理解有一個過程。在小學數學教學中,教師在處理一些問題時就要做到心中有函數思想,注意滲透函數思想。

  函數思想在人教版一年級上冊教材中就有滲透。如讓學生觀察《20以內進位加法表》,發現加數的變化引起的和的變化的規律等,都較好的滲透了函數的思想,其目的都在于幫助學生形成初步的函數概念。

  五、極限的思想方法

  極限的思想方法是人們從有限中認識無限,從近似中認識精確,從量變中認識質變的一種數學思想方法,它是事物轉化的重要環節,了解它有重要意義。

  現行小學教材中有許多處注意了極限思想的滲透。 在自然數、奇數、偶數這些概念教學時,教師可讓學生體會自然數是數不完的,奇數、偶數的個數有無限多個,讓學生初步體會無限思想;在循環小數這一部分內容中,13 = 0.333是一循環小數,它的小數點后面的數字是寫不完的,是無限的;在直線、射線、平行線的教學時,可讓學生體會線的兩端是可以無限延長的。

  六、化歸的思想方法

  化歸是解決數學問題常用的思想方法。化歸,是指將有待解決或未解決的的問題,通過轉化過程,歸結為一類已經解決或較易解決的問題中去,以求得解決。客觀事物是不斷發展變化的,事物之間的相互聯系和轉化,是現實世界的普遍規律。數學中充滿了矛盾,如已知和未知、復雜和簡單、熟悉和陌生、困難和容易等,實現這些矛盾的轉化,化未知為已知,化復雜為簡單,化陌生為熟悉,化困難為容易,都是化歸的思想實質。任何數學問題的解決過程,都是一個未知向已知轉化的過程,是一個等價轉化的過程。化歸是基本而典型的數學思想。我們實施教學時,也是經常用到它,如化生為熟、化難為易、化繁為簡、化曲為直等。

  小學數學學習的思想方法如:小數除法通過商不變性質化歸為除數是整數的除法;異分母分數加減法化歸為同分母分數加減法;異分母分數比較大小通過通分化歸為同分母分數比較大小等;在教學平面圖形求積公式中,就以化歸思想、轉化思想等為理論武器,實現長方形、正方形、平行四邊形、三角形、梯形和圓形的面積計算公式間的同化和順應,從而構建和完善了學生的認知結構。

  七、歸納的思想方法

  在研究一般性性問題之前,先研究幾個簡單的、個別的、特殊的情況,從而歸納出一般的規律和性質,這種從特殊到一般的思維方式稱為歸納思想。數學知識的發生過程就是歸納思想的應用過程。在解決數學問題時運用歸納思想,既可認由此發現給定問題的解題規律,又能在實踐的基礎上發現新的客觀規律,提出新的原理或命題。因此,歸納是探索問題、發現數學定理或公式的重要思想方法,也是思維過程中的一次飛躍。

  如:在教學三角形內角和時,先由直角三角形、等邊三角形算出其內角和度數,再用猜測、操作、驗證等方法推導一般三角形的內角和,最后歸納得出所有三角形的內角和為180度。這就運用歸納的思想方法。

  八、符號化的思想方法

  數學發展到今天,已成為一個符號化的世界。符號就是數學存在的具體化身。英國著名數學家羅素說過:什么是數學?數學就是符號加邏輯。數學離不開符號,數學處處要用到符號。懷特海曾說:只要細細分析,即可發現符號化給數學理論的表述和論證帶來的極大方便,甚至是必不可少的。數學符號除了用來表述外,它也有助于思維的發展。如果說數學是思維的體操,那么,數學符號的`組合譜成了體操進行曲。現行小學數學教材十分注意符號化思想的滲透。

  人教版教材從一年級就開始用□或( )代替變量 x ,讓學生在其中填數。例如: 1 + 2 = □ ,6 +( )=8 , 7 = □+□+□+□+□+□+□;再如:學校有7個球,又買來4個。現在有多少個?要學生填出□ ○ □ = □ (個)。

  符號化思想在小學數學內容中隨處可見,教師要有意識地進行滲透。數學符號是抽象的結晶與基礎,如果不了解其含義與功能,它如同天書一樣令人望而生畏。因此 ,教師在教學中要注意學生的可接受性。

  九、統計的思想方法

  在生產、生活和科學研究時,人們通常需要有目的地調查和分析一些問題,就要把收集到的一些原始數據加以歸類整理,從而推理研究對象的整體特征,這就是統計的思想和方法。例如,求平均數是一種理想化的統計方法。我們要比較兩個班的學習情況,以班級學生的平均數作為該班成績的標志是有一定說服力的,這是一種最常用、最簡單方便的統計方法

  小學數學除滲透運用了上述各數學思想方法外,還滲透運用了轉化的思想方法、假設的思想方法、比較的思想方法、分類的思想方法、類比的思想方法等。從教學效果看,在教學中滲透和運用這些教學思想方法,能增加學習的趣味性,激發學生的學習興趣和學習的主動性;能啟迪思維,發展學生的數學智能;有利于學生形成牢固、完善的認識結構。總之,在教學中,教師要既重視數學知識、技能的教學,又注重數學思想、方法的滲透和運用,這樣無疑有助于學生數學素養的全面提升,無疑有助于學生的終身學習和發展。

  數學學習的思想方法 篇2

  1、對應思想方法

  對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,并以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。

  2、假設思想方法

  假設是先對題目中的已知條件或問題作出某種假設,然后按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最后找到正確答案的一種思想方法。假設思想是一種有意義的想象思維,掌握之后可以使要解決的問題更形象、具體,從而豐富解題思路。

  3、比較思想方法

  比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善于引導學生比較題中已知和未知數量變化前后的情況,可以幫助學生較快地找到解題途徑。

  4、符號化思想方法

  用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。

  5、類比思想方法

  類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟般自然和簡潔。

  6、轉化思想方法

  轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。

  7、分類思想方法

  分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標準。如自然數的分類,若按能否被2整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。不同的分類標準就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決于分類標準的正確、合理性,數學知識的分類有助于學生對知識的梳理和建構。

  8、集合思想方法

  集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。小學采用直觀手段,利用圖形和實物滲透集合思想。在講述公約數和公倍數時采用了交集的思想方法。

  9、數形結合思想方法

  數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,借助圖形使之直觀化、形象化、簡單化。另一方面復雜的.形體可以用簡單的數量關系表示。在解應用題中常常借助線段圖的直觀幫助分析數量關系。

  10、統計思想方法

  小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。

  11、極限思想方法

  事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講“圓的面積和周長”時,“化圓為方”“化曲為直”的極限分割思路,在觀察有限分割的基礎上想象它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發了無限逼近的極限思想。

  12、代換思想方法

  它是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了4張桌子和9把椅子,共用去504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少?

  13、可逆思想方法

  它是邏輯思維中的基本思想,當順向思維難于解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推。如一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。

  14、化歸思維方法

  把有可能解決的或未解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,以求得解決,這就是“化歸”。而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。化歸的方向應該是化隱為顯、化繁為簡、化難為易、化未知為已知。

  15、變中抓不變的思想方法

  在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解。如:科技書和文藝書共630本,其中科技書20%,后來又買來一些科技書,這時科技書占30%,又買來科技書多少本?

  16、數學模型思想方法

  所謂數學模型思想是指對于現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法。培養學生用數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。

  17、整體思想方法

  對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法。

【數學學習的思想方法】相關文章:

小學數學的學習思想方法01-23

小學數學學習的思想方法01-25

小升初學習數學的思想方法01-22

注重數學思想方法 提高學習效率04-27

小學數學學習的思想方法是什么01-23

小升初學習數學的9個思想方法01-24

高中數學學習的思想方法01-26

小學數學學習的思想方法有哪些01-27

學習數學思想方法心得體會12-15

亚洲制服丝袜二区欧美精品,亚洲精品无码视频乱码,日韩av无码一区二区,国产人妖视频一区二区
亚洲国产精品欧美中文字幕 | 综合国产精品一区二区三区 | 色多多99在线热播视频 | 午夜宅男国产在线播放 | 天天爱天天久久 | 香蕉精品亚洲二区在线观看 |