高中數學說課稿

時間:2025-03-07 10:20:02 高中說課稿 我要投稿

有關高中數學說課稿模板九篇

  在教學工作者實際的教學活動中,通常需要準備好一份說課稿,說課稿有助于提高教師的語言表達能力。那么什么樣的說課稿才是好的呢?以下是小編幫大家整理的高中數學說課稿9篇,僅供參考,大家一起來看看吧。

有關高中數學說課稿模板九篇

高中數學說課稿 篇1

  一、教材分析

  (一)教材的地位和作用

  “一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數知識的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養學生的觀察能力、概括能力、探究能力及創新意識。

  (二)教學內容

  本節內容分2課時學習。本課時通過二次函數的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數學中的和諧美,體驗成功的樂趣。

  二、教學目標分析

  根據教學大綱的要求、本節教材的特點和高一學生的認知規律,本節課的教學目標確定為:

  知識目標——理解“三個二次”的關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

  能力目標——通過看圖象找解集,培養學生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

  情感目標——創設問題情景,激發學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。

  三、重難點分析

  一元二次不等式是高中數學中最基本的不等式之一,是解決許多數學問題的重要工具。本節課的重點確定為:一元二次不等式的解法。

  要把握這個重點。關鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點的橫坐標的內在聯系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。

  四、教法與學法分析

  (一)學法指導

  教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養“創新型”人才的需要。

  (二)教法分析

  本節課設計的指導思想是:現代認知心理學——建構主義學習理論。

  建構主義學習理論認為:應把學習看成是學生主動的.建構活動,學生應與一定的知識背景即情景相聯系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

  本節課采用“誘思引探教學法”。把問題作為出發點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。

  五、課堂設計

  本節課的教學設計充分體現以學生發展為本,培養學生的觀察、概括和探究能力,遵循學生的認知規律,體現理論聯系實際、循序漸進和因材施教的教學原則,通過問題情境的創設,激發興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。

  (一)創設情景,引出“三個一次”的關系

  本節課開始,先讓學生解一元二次方程x2-x-6=0,如果我把“=”改成“>”則變成一元二次不等式x2-x-6>0讓學生解,學生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構造懸念,激活學生的思維興趣。

  為此,我設計了以下幾個問題:

  1、請同學們解以下方程和不等式:

  ①2x-7=0;②2x-7>0;③2x-7<0

  學生回答,我板書

高中數學說課稿 篇2

各位老師:

  大家好!

  我叫xxx,來自xx。我說課的題目是《用樣本的數字特征估計總體的數字特征》,內容選自于高中教材新課程人教A版必修3第二章第二節,課時安排為三個課時,本節課內容為第一課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析四大方面來闡述我對這節課的分析和設計:

  一、教材分析

  1、教材所處的地位和作用

  在上一節我們已經學習了用圖、表來組織樣本數據,并且學習了如何通過圖、表所提供的信息,用樣本的頻率分布估計總體的分布情況。本節課是在前面所學內容的基礎上,進一步學習如何通過樣本的情況來估計總體,從而使我們能從整體上更好地把握總體的規律,為現實問題的解決提供更多的幫助。

  2教學的重點和難點

  重點:⑴能利用頻率頒布直方圖估計總體的眾數,中位數,平均數。

  ⑵體會樣本數字特征具有隨機性

  難點:能應用相關知識解決簡單的實際問題。

  二、教學目標分析

  1、知識與技能目標

  (1)能利用頻率頒布直方圖估計總體的眾數,中位數,平均數。

  (2)能用樣本的眾數,中位數,平均數估計總體的眾數,中位數,平均數,并結合實際,對問題作出合理判斷,制定解決問題的有效方法。

  2、過程與方法目標:

  通過對本節課知識的學習,初步體會、領悟"用數據說話"的統計思想方法。

  3、情感態度與價值觀目標:

  通過對有關數據的搜集、整理、分析、判斷培養學生"實事求是"的科學態度和嚴謹的工作作風。

  三、教學方法與手段分析

  1、教學方法:結合本節課的教學內容和學生的認知水平,在教法上,我采用"問答探究"式的教學方法,層層深入。充分發揮教師的主導作用,讓學生真正成為教學活動的主體。

  2、教學手段:通過多媒體輔助教學,充分調動學生參與課堂教學的主動性與積極性。

  四、教學過程分析

  1、復習回顧,問題引入

  「屏幕顯示」

  〈問題1〉在日常生活中,我們往往并不需要了解總體的分布形態,而是更關心總體的某一數字特征,例如:買燈泡時,我們希望知道燈泡的平均使用壽命,我們怎樣了解燈泡的的使用壽命呢?當然不能把所有燈泡一一測試,因為測試后燈泡則報廢了。于是,需要通過隨機抽樣,把這批燈泡的壽命看作總體,從中隨機取出若干個個體作為樣本,算出樣本的數字特征,用樣本的數字特征來估計總體的數字特征。

  提出問題:什么是平均數,眾數,中位數?

  (教師提問,鋪墊復習,學生思考、積極回答。根據學生回答,給出補充總結,借助用多媒體分別給出他們的定義)

  「設計意圖」使學生對本節課的學習做好知識準備。

  (進一步提出實例、導入新課。)

  「屏幕顯示」

  〈問題2〉選擇薪水高的職業是人之常情,假如你大學畢業有兩個工作相當的單位可供選擇,現各從甲乙兩單位分別隨機抽取了50名員工的月工資資料如下(單位:元)

  分組計算這兩組50名員工的月工資平均數,眾數,中位數并估計這兩個公司員工的平均工資。你選擇哪一個公司,并說明你的理由。

  (學生分組分別求兩組數據的平均工資。

  學生:甲、乙平均工資分別為:甲:1320元,乙:1530元。

  所以我選乙公司。

  學生乙:甲、乙兩公司的眾數分別為甲:1200,乙:1000,所以我選擇甲公司。

  學生丙:我要根據我的能力選擇。)

  「設計意圖」學生按"常理"做出選擇,教師指出只憑平均工資做出判斷的依據并不可靠,從而引導學生進一步深入問題。

  2講授新課,深入認識

  ⑴「屏幕顯示」

  例如,在上一節抽樣調查的100位居民的月均用水量的數據中,我們畫出了這組數據的頻率分布直方圖。現在,觀察這組數據的頻率分布直方圖,能否得出這組數據的眾數、中位數和平均數?

  (把學生分成若干小組,分別計算平均數、中位數、眾數,或估計平均數、中位數、眾數。然后比較結果,會發現通過計算的結果和通過估計的結果出現了一定的誤差。引導學生分析產生誤差的原因。原因是由于樣本數據的頻率分布直方圖把原始的一些數據給遺失了。讓學生明白產生這樣的`誤差對總體的估計沒有大的影響,因為樣本本身也有隨機性。)

  「設計意圖」讓學生懂得如何根據頻率分布直方圖估計樣本的平均數、中位數和眾數。使學生明白從直方圖中估計樣本的數字特征雖然會有一些誤差,但直觀、快速、可避免繁瑣的計算和閱讀數據的過程。

  ⑵〈提出問題〉根據樣本的眾數、中位數、平均數估計總體平均數的基本數據,并對上一節的探究問題制定一個合理平價用水量的的標準。

  (師生通過共同交流探討得知僅以平均數或只使用中位數或眾數制定出平價用水標準都是不合理的,必須綜合考慮才能做出合理的選擇)

  「設計意圖」使學生會依據眾數、中位數、平均數對數據進行綜合判斷,并做出合理選擇。也為接下來對他們優缺點的總結打下基礎。

  ⑶總結出眾數、中位數、平均數三種數字特征的優缺點。

  (先由學生思考,然后再老師的引導下做出總結)

  「設計意圖」使學生能更準確更全面地依據樣本的眾數、中位數、平均數對數據進行綜合判斷,并做出合理選擇,使實際問題得到正確的解決。

  3、反思小結、培養能力

  ①學習利用頻率直方圖估計總體的眾數、中位數和平均數的方法。

  ②介紹眾數、中位數和平均數這三個特征數的優點和缺點。

  ③學習如何利用眾數、中位數和平均數的特征去分析解決實際問題。

  「設計意圖」小節是一堂課的概括和總結,有利于優化學生的認知結構,把課堂教學傳授的知識較快轉化為學生的素質,也更進一步培養學生的歸納概括能力

  4、課后作業,自主學習

  課本練習

  [設計意圖]課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。

  5、板書設計

高中數學說課稿 篇3

  尊敬的各位專家、評委:

  下午好!

  我的抽簽序號是____,今天我說課的課題是《_______》第__課時。 我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。

  一、教材分析

  (一)地位與作用

  數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。

  (二)學情分析

  (1)學生已熟練掌握_________________。

  (2)學生的知識經驗較為豐富,具備了教強的抽象思維能力和演繹推理能力。

  (3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。

  (4) 學生層次參次不齊,個體差異比較明顯。

  二、目標分析

  新課標指出“三維目標”是一個密切聯系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養為主線,透情感態度與價值觀,并把這兩者充分體現在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發,根據____在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:

  (一)教學目標

  (1)知識與技能

  使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;。

  (2)過程與方法

  引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。

  (3)情感態度與價值觀

  在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。

  (二)重點難點

  本節課的教學重點是________________________,教學難點是_____________________。

  三、教法、學法分析

  (一)教法

  基于本節課的內容特點和高二學生的年齡特征,按照臨沂市高中數學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現本節課的教學目標,在教法上我采取了:

  1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性.

  2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.

  3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達.

  (二)學法

  在學法上我重視了:

  1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。

  2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。

  四、教學過程分析

  (一)教學過程設計

  教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發生、發展和運用過程的演繹、解釋和探究來組織和推動教學。

  (1)創設情境,提出問題。

  新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。

  (2)引導探究,建構概念。

  數學概念的形成來自解決實際問題和數學自身發展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的.知識基礎出發,經歷“數學化”、“再創造”的活動過程.

  (3)自我嘗試,初步應用。

  有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究.

  (4)當堂訓練,鞏固深化。

  通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。

  (5)小結歸納,回顧反思。

  小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:(1)通過本節課的學習,你學到了哪些知識?(2)通過本節課的學習,你最大的體驗是什么?(3)通過本節課的學習,你掌握了哪些技能?

  (二)作業設計

  作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本

  節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成.

  我設計了以下作業:

  (1)必做題

  (2)選做題

  (三)板書設計

  板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。

  五、評價分析

  學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。 以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。 謝謝!

高中數學說課稿 篇4

  一、教材分析(說教材):

  1. 教材所處的地位和作用:

  本節內容在全書和章節中的作用是:《 》是 中數學教材第 冊第 章第 節內容。在此之前學生已學習了 基礎,這為過渡到本節的學習起著鋪墊作用。本節內容是在 中,占據 的地位。以及為其他學科和今后的學習打下基礎。

  2. 教育教學目標:

  根據上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:

  (1)知識目標:

  (2)能力目標:通過教學初步培養學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協作,語言表達能力以及通過師生雙邊活動,初步培養學生運用知識的能力,培養學生加強理論聯系實際的能力,(3)情感目標:通過 的教學引導學生從現實的生活經歷與體驗出發,激發學生學習興趣。

  3. 重點,難點以及確定依據:

  下面,為了講清重難上點,使學生能達到本節課設定的目標,再從教法和學法上談談:

  二、教學策略(說教法)

  1. 教學手段:

  如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節課的特點: 應著重采用 的教學方法。

  2. 教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養其自信心,激發其學習熱情。有效的開發各層次學生的潛在智能,力求使學生能在原有的基礎上得到發展。同時通過課堂練習和課后作業,啟發學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力。

  3. 學情分析:(說學法)

  (1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發學生興趣,有效地培養學生能力,促進學生個性發展。生理上表少年好動,注意力易分散

  (2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現知識遺忘,所以應全面系統的去講述;學生學習本節課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。

  (3)動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力

  最后我來具體談談這一堂課的教學過程:

  4. 教學程序及設想:

  (1)由 引入:把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。

  (2)由實例得出本課新的知識點

  (3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規律進行概括,有利于學生的思維能力。

  (4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

  (5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐步培養學生良好的個性品質目標。

  (6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯,累積,加工,從而達到舉一反三的.效果。

  (7)板書

  (8)布置作業。

  針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,

  教學程序:

  (一)課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業等五部分

  高中數學集合教學反思

  集合這章內容,教學參考書上安排的課時為五課時,我們的導學案也是安排五課時,實際教學時,由于對學生的實際情況估計不足,第一課時的導學案用了兩課時才完成。集合這一章的特點是概念不多,但這章所涉及到的內容很廣,學生學習本章內容時,不僅要理解本章的概念,還要理解與本章內容相關聯的其他內容,這些內容有初中學習過的內容、有生活中的方方面面的相關知識,再加上高中學習方法與初中不同,邏輯思維能力要求較高,因此學生感覺學起來比較困難。針對這種情況,我在實際教學時,首先要求學生準確理解概念,如:集合的元素具有三個性質:確定性、互異性、無序性。集合的關系、運算等都是從元素的角度定義的,所以解集合問題時,教會學生對元素的性質進行分析,反復訓練,讓學生通過實例體會這三個性質。

  第二,掌握相關的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學難點。第二個難點是集合的運算—交集和并集。突破難點充分運用數形結合思想,集合間的關系和運算,以數形結合思想為指導,借助圖形思考,可以使各集合間的關系直觀明了,使抽象的集合運算建立在直觀的基礎上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。

  第三,指導學生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準確地進行語言轉換,可以幫助學生提高分析問題,解決問題的能力。

  第四,集合問題涉及到的其他內容,遇到了講透,不拓展。

高中數學說課稿 篇5

  拋物線焦點性質的探索(說課)

  一、教材分析

  1 教材的地位與作用 “拋物線焦點的性質”是拋物線的重要性質之一,它是在學生學習拋物線的一般性質的基礎上,學習和研究的拋物線有關問題的基本工具之一;本節教材對于培養學生觀察、猜想、概括能力和邏輯推理能力具有重要的意義。

  2 教學目的 全日制普通高級中學《數學教學大綱》第22頁“重視現代教育技術的運用”中明確提出:在數學教學過程中,應有意識地利用計算機網絡等現代信息技術,認識計算機的'智能圖形、快速計算、機器證明、自動求解及人機交互等功能在數學教學中的巨大潛力,努力探索在現代信息技術支持下的教學方法、教學模式。設計和組織能吸引學生積極參與的數學活動,支持和鼓勵學生運用信息技術學習數學、開展課題研究,改進學習方式,提高學生的自主學習能力和創新意識。因此本人在現行高中新教材(試驗修訂本·必修)數學第二冊(上)拋物線這一節內容為背景材料,以多媒體網絡教室為場地,以《幾何畫板》為教學工具與學習工具,設計了一堂《拋物線焦點性質的探索》,具體目標如下:

  (1) 知識目標:了解焦點的有關性質;并掌握這些性質的證明方法;體會數形結合思想與分類討論思想在解決解析幾何題中的指導作用

  (2) 能力目標:使學生學會研究數學問題的基本過程,能夠根據條件建立恰當的數學模型;培養辯證唯物主義思想和辯證思維能力(主要包括量變與質變,常量與變量,運動與靜止)培養學生通過計算機來自主學習的能力與創新的能力。

  (3) 情感目標:培養學生不畏困難,勇于鉆研、探索、大膽創新的精神,在挫折中成長鍛煉,培養學生良好的心理素質和抗挫折能力,通過拋物線焦點性質的探索及證明,使學生得到數學美和創造美的享受。

  3 教學內容、重點、難點及關鍵 本節安排兩節課,

  第一節課:主要內容是利用《幾何畫板》探索拋物線的有關性質;

  第二節課:證明第一節所得到的有關性質。

  重點:

  (1)如何利用《幾何畫板》探索、發現拋物線焦點的性質;

  (2)如何證明這些性質。

  難點;

  (1)如何利用《幾何畫板》探索、發現拋物線焦點的性質;

  (2)如何證明這些性質。

  二、教學策略及教法設計

  學生在網絡教室(每人一機),其中裝有《幾何畫板》軟件及上課系統,每個學生的窗口,其他學生及教師都可以通過教師機切換,從而和其他學生交流,也可以通過網上論壇交流研究結果。

  三、網絡教學環境設計

  學生在網絡教室(每人一機)中有幾何畫板軟件,學生通過教師提供的網絡,自已閱讀,下載有關,利用《幾何畫板》的操作、試驗、猜想,通過自己的研究獲得結論,并互相討論觀察到的現象、交流研究結果。

  四、教學過程設計

  4.1 使學生學會研究數學問題的基本過程,能夠根據條件建立恰當的數學模型 問題1 回顧一下拋物線的定義,并根據拋物線的定義思考用《幾何畫板》如何作出焦點在x軸上的拋物線圖象。 由于創設了一個創作的《幾何畫板》的窗口及網絡窗口,學生通過網絡學習,得到以上問題的多種作法,以下就其中的一種作法作為探索、研究拋物線焦點性質的基本圖形。

高中數學說課稿 篇6

  各位老師:

  大家好!我叫***,來自**。我說課的題目是《概率的基本性質》,內容選自于高中教材新課程人教A版必修3第三章第一節,課時安排為三個課時,本節課內容為第三課時。下面我將從教材分析、教學目標分析、教法分析、教學過程分析四大方面來闡述我對這節課的分析和設計:

  一、教材分析

  1、教材所處的地位和作用

  本節課主要包含了兩部分內容:一是事件的關系與運算,二是概率的基本性質,多以基本概念和性質為主。它是本冊第二章統計的延伸,又是后面"古典概型"及"幾何概型"的基礎。在整個教學中起到承上啟下的作用。同時也是新課改以來考查的熱點之一。

  2、教學的重點和難點

  重點:概率的加法公式及其應用;事件的關系與運算。

  難點:互斥事件與對立事件的區別與聯系

  二、教學目標分析

  1.知識與技能目標

  ⑴了解隨機事件間的基本關系與運算;

  ⑵掌握概率的幾個基本性質,并會用其解決簡單的概率問題。

  2、過程與方法:

  ⑴通過觀察、類比、歸納培養學生運用數學知識的綜合能力;

  ⑵通過學生自主探究,合作探究培養學生的動手探索的能力。

  3、情感態度與價值觀:

  通過數學活動,了解教學與實際生活的密切聯系,感受數學知識應用于現實世界的具體情境,從而激發學習數學的情趣。

  三、教法分析

  采用實驗觀察、質疑啟發、類比聯想、探究歸納的教學方法。

  四、教學過程分析

  1、創設情境,引入新課

  在擲骰子的試驗中,我們可以定義許多事件,如:

  c1=﹛出現的點數=1﹜,c2=﹛出現的點數=2﹜

  c3=﹛出現的點數=3﹜,c4=﹛出現的點數=4﹜

  c5=﹛出現的點數=5﹜,c6=﹛出現的點數=6﹜

  D1=﹛出現的點數不大于1﹜D2=﹛出現的點數大于3﹜

  D3=﹛出現的點數小于5﹜,E=﹛出現的點數小于7﹜

  f=﹛出現的點數大于6﹜,G=﹛出現的點數為偶數﹜

  H=﹛出現的點數為奇數﹜

  ⑴以引入例中的事件c1和事件H,事件c1和事件D1為例講授事件之的包含關系和相等關系。

  ⑵從以上兩個關系學生不難發現事件間的關系與集合間的關系相類似。進而引導學生思考,是否可以把事件和集合對應起來。

  「設計意圖」引出我們接下來要學習的主要內容:事件之間的關系與運算

  2、探究新知

  ㈠事件的關系與運算

  ⑴經過上面的思考,我們得出:

  試驗的可能結果的全體←→全集

  ↓↓

  每一個事件←→子集

  這樣我們就把事件和集合對應起來了,用已有的集合間關系來分析事件間的關系。

  集合的并→兩事件的并事件(和事件)

  集合的交→兩事件的交事件(積事件)

  在此過程中要注意幫助學生區分集合關系與事件關系之間的不同。

  (例如:兩集合A∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發生,表示或者事件A發生,或者事件B發生。)

  「設計意圖」為更好地理解互斥事件和對立事件打下基礎,

  ⑵思考:①若只擲一次骰子,則事件c1和事件c2有可能同時發生么?

  ②在擲骰子實驗中事件G和事件H是否一定有一個會發生?

  「設計意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來將要學習的互斥事件和對立事件,讓學生從實際案例中體驗它們各自的特征以及它們之間的區別與聯系。

  ⑶總結出互斥事件和對立事件的概念,并通過多媒體的圖形演示使學生們能更好地理解它們的特征以及它們之間的區別與聯系。

  ⑷練習:通過多媒體顯示兩道練習,目的是讓學生們能夠及時鞏固對互斥事件和對立事件的學習,加深理解。

  ㈡概率的基本性質:

  ⑴回顧:頻率=頻數/試驗的次數

  我們知道當試驗次數足夠大時,用頻率來估計概率,由于頻率在0~1之間,所以,可以得到概率的基本性質、

  (通過對頻率的理解并結合前面投硬幣的.實驗來總結出概率的基本性質,師生共同交流得出結果)

  3、典型例題探究

  例1一個射手進行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?

  事件A:命中環數大于7環;事件B:命中環數為10環;

  事件c:命中環數小于6環;事件D:命中環數為6、7、8、9、10環、

  分析:要判斷所給事件是對立還是互斥,首先將兩個概念的聯系與區別弄清楚

  例2如果從不包括大小王的52張撲克牌中隨機抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問:

  (1)取到紅色牌(事件c)的概率是多少?

  (2)取到黑色牌(事件D)的概率是多少?

  分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對立事件,因此P(D)=1—P(c).

  「設計意圖」通過這兩道例題,進一步鞏固學生對本節課知識的掌握,并將所學知識應用到實際解決問題中去。

  4、課堂小結

  ⑴理解事件的關系和運算

  ⑵掌握概率的基本性質

  「設計意圖」小結是引導學生對問題進行回味與深化,使知識成為系統。讓學生嘗試小結,提高學生的總結能力和語言表達能力。教師補充幫助學生全面地理解,掌握新知識。

  5、布置作業

  習題3、1A1、3、4

  「設計意圖」課后作業的布置是為了檢驗學生對本節課內容的理解和運用程度,并促使學生進一步鞏固和掌握所學內容。

  五、板書設計

  概率的基本性質

  一、事件間的關系和運算

  二、概率的基本性質

  三、例1的板書區

  例2的板書區

  四、規律性質總結

高中數學說課稿 篇7

  一、地位作用

  數列是高中數學重要的內容之一,等比數列是在學習了等差數列后新的一種特殊數列,在生活中如儲蓄、分期付款等應用較為廣泛,在整個高中數學內容中數列與已學過的函數及后面的數列極限有密切聯系,它也是培養學生數學能力的良好題材,它可以培養學生的觀察、分析、歸納、猜想及綜合解決問題的能力。

  基于此,設計本節的數學思路上:

  利用類比的思想,聯系等差數列的概念及通項公式的學習方法,采取自學、引導、歸納、猜想、類比總結的教學思路,充分發揮學生主觀能動性,調動學生的主體地位,充分體現教為主導、學為主體、練為主線的教學思想。

  二、教學目標

  知識目標:1)理解等比數列的概念

  2)掌握等比數列的通項公式

  3)并能用公式解決一些實際問題

  能力目標:培養學生觀察能力及發現意識,培養學生運用類比思想、解決分析問題的能力。

  三、教學重點

  1)等比數列概念的`理解與掌握 關鍵:是讓學生理解“等比”的特點

  2)等比數列的通項公式的推導及應用

  四、教學難點

  “等比”的理解及利用通項公式解決一些問題。

  五、教學過程設計

  (一)預習自學環節。(8分鐘)

  首先讓學生重新閱讀課本105頁國際象棋發明者的故事,并出示預習提綱,要求學生閱讀課本P122至P123例1上面。

  回答下列問題

  1)課本中前3個實例有什么特點?能否舉出其它例子,并給出等比數列的定義。

  2)觀察以下幾個數列,回答下面問題:

  1, , , ,……

  -1,-2,-4,-8……

  1,2,-4,8……

  -1,-1,-1,-1,……

  1,0,1,0……

  ①有哪幾個是等比數列?若是公比是什么?

  ②公比q為什么不能等于零?首項能為零嗎?

  ③公比q=1時是什么數列?

  ④q>0時數列遞增嗎?q<0時遞減嗎?

  3)怎樣推導等比數列通項公式?課本中采取了什么方法?還可以怎樣推導?

  4)等比數列通項公式與函數關系怎樣?

  (二)歸納主導與總結環節(15分鐘)

  這一環節主要是通過學生回答為主體,教師引導總結為主線解決本節兩個重點內容。

  通過回答問題(1)(2)給出等比數列的定義并強調以下幾點:①定義關鍵字“第二項起”“常數”;

  ②引導學生用數學語言表達定義: =q(n≥2);③q=1時為非零常數數列,既是等差數列又是等比數列。引申:若數列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。

  ④q>0時等比數列單調性不定,q<0為擺動數列,類比等差數列d>0為遞增數列,d<0為遞減數列。

  通過回答問題(3)回憶等差數列的推導方法,比較兩個數列定義的不同,引導推出等比數列通項公式。

  法一:歸納法,學會從特殊到一般的方法,并從次數中發現規律,培養觀察力。

  法二:迭乘法,聯系等差數列“迭加法”,培養學生類比能力及新舊知識轉化能力。

高中數學說課稿 篇8

  一、教材分析:

  1、教材的地位與作用:

  線性規劃是運籌學的一個重要分支,在實際生活中有著廣泛的應用。本節內容是在學習了不等式、直線方程的基礎上,利用不等式和直線方程的有關知識展開的,它是對二元一次不等式的深化和再認識、再理解。通過這一部分的學習,使學生進一步了解數學在解決實際問題中的應用,體驗數形結合和轉化的思想方法,培養學生學習數學的興趣、應用數學的意識和解決實際問題的能力。

  2、教學重點與難點:

  重點:畫可行域;在可行域內,用圖解法準確求得線性規劃問題的最優解。

  難點:在可行域內,用圖解法準確求得線性規劃問題的最優解。

  二、目標分析:

  在新課標讓學生經歷“學數學、做數學、用數學”的理念指導下,本節課的教學目標分設為知識目標、能力目標和情感目標。

  知識目標:

  1、了解線性規劃的意義,了解線性約束條件、線性目標函數、可行解、可行

  域和最優解等概念;

  2、理解線性規劃問題的圖解法;

  3、會利用圖解法求線性目標函數的`最優解.

  能力目標:

  1、在應用圖解法解題的過程中培養學生的觀察能力、理解能力。

  2、在變式訓練的過程中,培養學生的分析能力、探索能力。

  3、在對具體事例的感性認識上升到對線性規劃的理性認識過程中,培養學生運用數形結合思想解題的能力和化歸能力。

  情感目標:

  1、讓學生體驗數學來源于生活,服務于生活,體驗數學在建設節約型社會中的作用,品嘗學習數學的樂趣。

  2、讓學生體驗數學活動充滿著探索與創造,培養學生勤于思考、勇于探索的精神;

  3、讓學生學會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關系,滲透辯證唯物主義認識論的思想。

高中數學說課稿 篇9

  一、教學目標

  1.掌握任意角的正弦、余弦、正切函數的定義(包括定義域、正負符號判斷);了解任意角的余切、正割、余割函數的定義.

  2.經歷從銳角三角函數定義過度到任意角三角函數定義的推廣過程,體驗三角函數概念的產生、發展過程.領悟直角坐標系的工具功能,豐富數形結合的經驗.

  3.培養學生通過現象看本質的唯物主義認識論觀點,滲透事物相互聯系、相互轉化的辯證唯物主義世界觀.

  4.培養學生求真務實、實事求是的科學態度.

  二、重點、難點、關鍵

  重點:任意角的正弦、余弦、正切函數的定義、定義域、(正負)符號判斷法.

  難點:把三角函數理解為以實數為自變量的函數.

  關鍵:如何想到建立直角坐標系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).

  三、教學理念和方法

  教學中注意用新課程理念處理傳統教材,學生的數學學習活動不僅要接受、記憶、模仿和練習,而且要自主探索、動手實踐、合作交流、閱讀自學,師生互動,教師發揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程.

  根據本節課內容、高一學生認知特點和我自己的教學風格,本節課采用"啟發探索、講練結合"的方法組織教學.

  四、教學過程

  [執教線索:

  回想再認:函數的概念、銳角三角函數定義(銳角三角形邊角關系)--問題情境:能推廣到任意角嗎?--它山之石:建立直角坐標系(為何?)--優化認知:用直角坐標系研究銳角三角函數--探索發展:對任意角研究六個比值(與角之間的關系:確定性、依賴性,滿足函數定義嗎?)--自主定義:任意角三角函數定義--登高望遠:三角函數的要素分析(對應法則、定義域、值域與正負符號判定)--例題與練習--回顧小結--布置作業]

  (一)復習引入、回想再認

  開門見山,面對全體學生提問:

  在初中我們初步學習了銳角三角函數,前幾節課,我們把銳角推廣到了任意角,學習了角度制和弧度制,這節課該研究什么呢?

  探索任意角的三角函數(板書課題),請同學們回想,再明確一下:

  (情景1)什么叫函數?或者說函數是怎樣定義的?

  讓學生回想后再點名回答,投影顯示規范的定義,教師根據回答情況進行修正、強調:

  傳統定義:設在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應,那么就說y是x的函數,x叫做自變量,自變量x的取值范圍叫做函數的定義域.

  現代定義:設A、B是非空的數集,如果按某個確定的對應關系f,使對于集合A中的任意一個數,在集合B中都有唯一確定的數f(x)和它對應,那么就稱映射?:A→B為從集合A到集合B的一個函數,記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數的定義域.

  設計意圖:

  函數和三角函數是一般和特殊的關系,是共性和個性的關系,學生已經學習了函數的概念,因此對三角函數的學習就是一個從一般到特殊的演繹的過程,也是以具體函數豐富函數概念的過程.教學經驗表明:學生對函數兩種定義的記憶是有一定困難的,容易遺忘,此處讓學生對函數概念進行回想再認,目的在于明確函數概念的本質,為演繹學習任意角三角函數概念作好知識和認知準備.

  (情景2)我們在初中通過銳角三角形的邊角關系,學習了銳角的正弦、余弦、正切等三個三角函數.請回想:這三個三角函數分別是怎樣規定的?

  學生口述后再投影展示,教師再根據投影進行強調:

  設計意圖:

  學生在初中學習了銳角的三角函數概念,現在學習任意角的三角函數,又是一種推廣和拓展的過程(類似于從有理數到實數的擴展).溫故知新,要讓學生體會知識的產生、發展過程,就要從源頭上開始,從學生現有認知狀況開始,對銳角三角函數的復習就必不可少.

  (二)引伸鋪墊、創設情景

  (情景3)我們已經把銳角推廣到了任意角,銳角的三角函數概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!

  留時間讓學生獨立思考或自由討論,教師參與討論或巡回對學困生作啟發引導.

  能推廣嗎?怎樣推廣?針對剛才的問題點名讓學生回答.用角的對邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節已經以直角坐標系為工具來研究任意角了,學生一般會想到(否則教師進行提示)繼續用直角坐標系來研究任意角的三角函數.

  設計意圖:

  從學生現有知識水平和認知能力出發,創設問題情景,讓學生產生認知沖突,進行必要的啟發,將學生思維引上自主探索、合作交流的"再創造"征程.

  教師對學生回答情況進行點評后布置任務情景:請同學們用直角坐標系重新研究銳角三角函數定義!

  師生共做(學生口述,教師板書圖形和比值):

  把銳角α安裝(如何安裝?角的頂點與原點重合,角的始邊與x軸非負半軸重合)在直角坐標系中,在角α終邊上任取一點P,作Pm⊥x軸于m,構造一個RtΔomP,則∠moP=α(銳角),設P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長|oP∣=r.

  根據銳角三角函數定義用x、y、r列出銳角α的正弦、余弦、正切三個比值,并補充對應列出三個倒數比值:

  設計意圖:

  此處做法簡單,思想重要.為了順利實現推廣,可以構建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節已經以直角坐標系為工具來研究任意角了,學生自然能想到仍然以直角坐標系為工具來研究任意角的三角函數.初中以直角三角形邊角關系來定義銳角三角函數,現在要用坐標系來研究,探索的結論既要滿足任意角的情形,又要包容初中銳角三角函數定義.這是一個認識的飛躍,是理解任意角三角函數概念的關鍵之一,也是數學發現的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學生在以后學習中對某些知識進行推廣拓展奠定了基礎(譬如從平面向量到空間向量的擴展,從實數到復數的擴展等).

  (情景4)各個比值與角之間有怎樣的關系?比值是角的函數嗎?

  追問:銳角α大小發生變化時,比值會改變嗎?

  先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:保持r不變,讓P繞原點o旋轉即α在銳角范圍內變化,六個比值隨之變化的直觀形象。結論是:比值隨α的變化而變化.

  引導學生觀察圖3,聯系相似三角形知識,

  探索發現:

  對于銳角α的每一個確定值,六個比值都是

  確定的,不會隨P在終邊上的移動而變化.

  得出結論(強調):當α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.所以,六個比值分別是以角α為自變量、以比值為函數值的函數.

  設計意圖:

  初中學生對函數理解較膚淺,這里在學生思維的最近發展區進一步研究初中學過的銳角三角函數,在思維上更上了一個層次,扣準函數概念的內涵,突出變量之間的依賴關系或對應關系,是從函數知識演繹到三角函數知識的主要依據,是準確理解三角函數概念的關鍵,也是在認知上把三角函數知識納入函數知識結構的關鍵.這樣做能夠使學生有效地增強函數觀念.

  (三)分析歸納、自主定義

  (情境5)能將銳角的比值情形推廣到任意角α嗎?

  水到渠成,師生共同進行探索和推廣:

  對于一個任意角α,它的.終邊所在位置包括下列兩類共八種情形(投影展示并作分析):

  終邊分別在四個象限的情形:終邊分別在四個半軸上的情形:

  ;

  (指出:不畫出角的方向,表明角具有任意性)

  怎樣刻畫任意角的三角函數呢?研究它的六個比值:

  (板書)設α是一個任意角,在α終邊上除原點外任意取一點P(x,y),P與原點o之間的距離記作r(r=>0),列出六個比值:

  α=kππ/2時,x=0,比值y/x、r/x無意義;

  α=kπ時,y=0,比值x/y、r/y無意義.

  追問:α大小發生變化時,比值會改變嗎?

  先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:使r保持不變,P繞原點o逆時針、順時針旋轉即角α變化,六個比值隨之改變的直觀形象。結論是:各比值隨α的變化而變化.

  再引導學生利用相似三角形知識,探索發現:對于任意角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.

  綜上得到(強調):當角α變化時,六個比值隨之變化;對于確定的角α,六個比值(如果存在的話)都不會隨P在角α終邊上的改變而改變,六個比值是確定的(對應的多值性即誘導公式一留到下節課分析).

  因此,六個比值分別是以角α為自變量、以比值為函數值的函數.

  根據歷史上的規定,對比值進行命名,指出英文記法和讀法,記作(承前作復合板書):

  =sinα(正弦)=cosα(余弦)=tanα(正切)

  =cscα(余割)=sec(正弦)=cotα(余切)

  教師強調:sinα表示sin與α的乘積嗎?不是,sinα是函數記號,是一個整體,相當于函數記號f(x).其它幾個三角函數也如此

  投影顯示圖六,指導學生分析其對應關系,進一步體會其函數內涵:

  (圖六)

  指導學生識記六個比值及函數名稱.

  教師指出:正弦、余弦、正切、余切、正割、余割六個函數統稱為三角函數,三角函數有非常豐富的知識和思想方法,我們以后主要學習正弦、余弦、正切三個函數的相關知識和方法,對于余切、正割、余割,只要同學們了解它們的定義就夠了(遵循大綱要求).

  引導學生進一步分析理解:

  已知角的集合與實數集之間可以建立一一對應關系,對于每一個確定的實數,把它看成一個弧度數,就對應著唯一的一個角,從而分別對應著六個唯一的三角函數值.因此,(板書)三角函數可以看成是以實數為自變量的函數,這將為以后的應用帶來很多方便.

  設計意圖:

  把角的終邊分別在四個象限、四條半軸上的情形全作出來,有利于對任意性的全面把握.明確比值存在與否的條件,為確定函數定義域作準備.動畫演示比值與角之間的依賴性與確定性關系,深化理解三角函數內涵.引導學生在理解的基礎上自主地對三角函數作出明確定義,是本節課的中心任務.由于學生剛學弧度制,對弧度制的理解有待于在以后的學習應用中逐步感悟,因此部分學生對"三角函數可以看成是以實數為自變量的函數"的理解有半信半疑之感,有待通過后續的應用加深理解.

  (四)探索定義域

  (情景6)(1)函數概念的三要素是什么?

  函數三要素:對應法則、定義域、值域.

  正弦函數sinα的對應法則是什么?

  正弦函數sinα的對應法則,實質上就是sinα的定義:對α的每一個確定的值,有唯一確定的比值y/r與之對應,即α→y/r=sinα.

  (2)布置任務情景:什么是三角函數的定義域?請求出六個三角函數的定義域,填寫下表:

  三角函數

  sinα

  cosα

  tanα

  cotα

  cscα

  secα

  定義域

  引導學生自主探索:

  如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數的定義域,三角函數的定義域自然是指:使比值有意義的角α的取值范圍.

  關于sinα=y/r、cosα=x/r,對于任意角α(弧度數),r>0,y/r、x/r恒有意義,定義域都是實數集R.

  對于tanα=y/x,α=kππ/2時x=0,y/x無意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}..........

  教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數定義在理解的基礎上記熟,cotα、cscα、secα的定義域不要求記憶.

  (關于值域,到后面再學習).

  設計意圖:

  定義域是函數三要素之一,研究函數必須明確定義域.指導學生根據定義自主探索確定三角函數定義域,有利于在理解的基礎上記住它、應用它,也增進對三角函數概念的掌握.

  (五)符號判斷、形象識記

  (情景7)能判斷三角函數值的正、負嗎?試試看!

  引導學生緊緊抓住三角函數定義來分析,r>0,三角函數值的符號決定于x、y值的正負,根據終邊所在位置總結出形象的識記口訣:

  (同好得正、異號得負)

  sinα=y/r:上正下負橫為0cosα=x/r:左負右正縱為0tanα=y/x:交叉正負

  設計意圖:

  判斷三角函數值的正負符號,是本章教材的一項重要的知識、技能要求.要引導學生抓住定義、數形結合判斷和記憶三角函數值的正負符號,并總結出形象的識記口訣,這也是理解和記憶的關鍵.

  (六)練習鞏固、理解記憶

  1、自學例1:已知角α的終邊經過點P(2,-3),求α的六個三角函數值.

  要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照解答,模仿書面表達格式,鞏固定義.

  課堂練習:

  p19題1:已知角α的終邊經過點P(-3,-1),求α的六個三角函數值.

  要求心算,并提問中下學生檢驗,--------

  點評:角α終邊上有無窮多個點,根據三角函數的定義,只要知道α終邊上任意一個點的坐標,就可以計算這個角的三角函數值(或判斷其無意義).

  補充例題:已知角α的終邊經過點P(x,-3),cosα=4/5,求α的其它五個三角函數值.

  師生探索:已知y=-3,要求其它五個三角函數值,須知r=?,x=?.根據定義得=(方程思想),x>0,解得x=4,從而--------.解答略.

  2、自學例2:求下列各角的六個三角函數值:(1)0;(2)π/2;(3)3π/2.

  提問,據反饋信息作點評、修正.

  師生探索:緊扣三角函數定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數值,都可以。

  取特殊點能使計算更簡明。課堂練習:p19題2.(改編)填表:

  角α(角度)

  0°

  90°

  180°

  270°

  360°

  角α(弧度)

  sinα

  cosα

  tanα

  處理:要求取點用定義求解,針對計算過程提問、點評,理解鞏固定義.

  強調:終邊在坐標軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經常用到軸線角的三角函數值,要結合三角函數定義記熟這些值.

  設計意圖:

  及時安排自學例題、自做教材練習題,一般性與特殊性相結合,進行適量的變式練習,以鞏固和加深對三角函數概念的理解,通過課堂積極主動的練習活動進行思維訓練,把"培養學生分析解決問題的能力"貫穿在每一節課的課堂教學始終.

  (七)回顧小結、建構網絡

  要求全體學生根據教師所提問題進行總結識記,提問檢查并強調:

  1.你是怎樣把銳角三角函數定義推廣到任意角的?或者說任意角三角函數具體是怎樣定義的?(建立直角坐標系,使角的頂點與坐標原點重合,---,在終邊上任意取定一點P,---)

  2.你如何判斷和記憶正弦、余弦、正切函數的定義域?(根據定義,------)

  3.你如何記憶正弦、余弦、正切函數值的符號?(根據定義,想象坐標位置,-----)

  設計意圖:

  遺忘的規律是先快后慢,回顧再現是記憶的重要途徑,在課堂內及時總結識記主要內容是上策.此處以問題形式讓學生自己歸納識記本節課的主體內容,抓住要害,人人參與,及時建構知識網絡,優化知識結構,培養認知能力.

  (八)布置課外作業

  1.書面作業:習題4.3第3、4、5題.

  2.認真閱讀p22"閱讀材料:三角函數與歐拉",了解歐拉的生平和貢獻,特別學習他對科學的摯著精神和堅忍不拔的頑強毅力!有興趣的同學可以上網查閱歐拉的相關情況.

  教學設計說明

  一、對本節教材的理解

  三角函數是描述周期運動現象的重要的數學模型,有非常廣泛的應用.

  星星之火,可以燎原.

  直角三角形簡單樸素的邊角關系,以直角坐標系為工具進行自然地推廣而得到簡明的任意角的三角函數定義,緊緊扣住三角函數定義這個寶貴的源泉,自然地導出三角函數線、定義域、符號判斷、值域、同角三角函數關系、多組誘導公式、多組變換公式、輔助角公式、圖象和性質,本章教材就是這些內容的具體安排.定義直接用于解析幾何(如直線斜率公式、極坐標、部分曲線的參數方程等),定義還是直接解決某些問題的工具,三角函數知識是物理學、高等數學、測量學、天文學的重要基礎.

  三角函數定義必然是學好全章內容的關鍵,如果學生掌握不好,將直接影響到后續內容的學習,由三角函數定義的基礎性和應用的廣泛性決定了本節教材的重點就是定義本身.

  二、教學法加工

  數學教材通常用抽象概括的形式化的數學書面語言闡述其知識和方法,教師只有通過教學法加工,始終貫徹"以學生的發展為本"的科學教育觀,"將數學的學術形態轉化為教育形態"(張奠宙語),引導學生積極主動地進行思考活動,直接參與體驗數學知識產生發展的背景、過程,返璞歸真,揭示本質,體會其中的思想和方法,學生只有這樣才能真正理解掌握數學知識和方法,有效地發展智力、培養能力.

  在本節教材中,三角函數定義是重點,三角函數線是難點,為了較好地突出重點和突破難點,分散重點和難點,同時兼顧例題、課堂練習的協調匹配,將不按教材順序來進行教學,第一課時安排三角函數的定義(突出重點)、定義域、符號判斷、例題1、2及p19課堂練習1、2、3,第二課時安排三角函數線、p15練習(突破難點)、誘導公式一及課本例題3、4和其它練習.本課例屬第一課時.

  教學經驗表明,三角函數定義"簡單易記",學生很容易輕視它,不少學生機械記憶、一知半解.本課例堅持"教師主導、學生主體"的原則,采用"啟發探索、講練結合"的常規教學方法,在學生的最近發展區圍繞學生的學習目標設計了一系列符合學生認知規律的程序,通過多媒體輔助教學動畫演示比值與角之間的依賴關系,拓展思維活動時空,力求使學生全員主動參與,積極思考,體會定義產生、發展的過程,通過思維過程來理解知識、培養能力.

  將六個比值放在一起來研究,同時給出六個三角函數的定義,能夠增強對比感和整體感,至于大綱對兩組函數掌握與了解的不同要求,在下一步的教學中注意區分就行了.

  教學中關于符號sinα、cosα、tanα的出場安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數關系;另外可以先研究六個比值與α之間的函數關系,然后再對六個比值取名給出記法.后者更能突出函數內涵,揭示三角函數本質.本課例采用后者組織教學.

  三、教學過程分析(見穿插在教案中的設計意圖).

【高中數學說課稿】相關文章:

高中數學的說課稿04-19

高中數學說課稿06-12

高中數學優秀說課稿03-08

高中數學數列說課稿06-07

高中數學說課稿06-13

高中數學全套說課稿06-08

高中數學《數列》說課稿01-18

高中數學說課稿優秀10-05

高中數學說課稿(熱門)01-16

高中數學說課稿(集合)06-17

亚洲制服丝袜二区欧美精品,亚洲精品无码视频乱码,日韩av无码一区二区,国产人妖视频一区二区
中文字幕一区二区5566 | 亚洲精品动漫卡通在线观看 | 亚洲成a人v电影在线点播 | 日本激情猛烈在线看免费观看 | 亚洲AV元码天堂一区二区三区 | 亚洲欧美蜜芽tv在线一区 |